翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

uniform module : ウィキペディア英語版
uniform module
In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of ''M'' is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself.
Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module. Uniform dimension generalizes some, but not all, aspects of the notion of the dimension of a vector space. Finite uniform dimension was a key assumption for several theorems by Goldie, including Goldie's theorem, which characterizes which rings are right orders in a semisimple ring. Modules of finite uniform dimension generalize both Artinian modules and Noetherian modules.
In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dimension should not be confused with the related notion, also due to Goldie, of the reduced rank of a module.
==Properties and examples of uniform modules==
Being a uniform module is not usually preserved by direct products or quotient modules. The direct sum of two nonzero uniform modules always contains two submodules with intersection zero, namely the two original summand modules. If ''N''1 and ''N''2 are proper submodules of a uniform module ''M'' and neither submodule contains the other, then M/(N_1\cap N_2) fails to be uniform, as
:N_1/(N_1\cap N_2)\cap N_2/(N_1\cap N_2)=\.
Uniserial modules are uniform, and uniform modules are necessarily directly indecomposable. Any commutative domain is a uniform ring, since if ''a'' and ''b'' are nonzero elements of two ideals, then the product ''ab'' is a nonzero element in the intersection of the ideals.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「uniform module」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.